population ecology

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Key People:
Thomas Park

population ecology, study of the processes that affect the distribution and abundance of animal and plant populations.

A population is a subset of individuals of one species that occupies a particular geographic area and, in sexually reproducing species, interbreeds. The geographic boundaries of a population are easy to establish for some species but more difficult for others. For example, plants or animals occupying islands have a geographic range defined by the perimeter of the island. In contrast, some species are dispersed across vast expanses, and the boundaries of local populations are more difficult to determine. A continuum exists from closed populations that are geographically isolated from, and lack exchange with, other populations of the same species to open populations that show varying degrees of connectedness.

Genetic variation within local populations

In sexually reproducing species, each local population contains a distinct combination of genes. As a result, a species is a collection of populations that differ genetically from one another to a greater or lesser degree. These genetic differences manifest themselves as differences among populations in morphology, physiology, behaviour, and life histories; in other words, genetic characteristics (genotype) affect expressed, or observed, characteristics (phenotype). Natural selection initially operates on an individual organismal phenotypic level, favouring or discriminating against individuals based on their expressed characteristics. The gene pool (total aggregate of genes in a population at a certain time) is affected as organisms with phenotypes that are compatible with the environment are more likely to survive for longer periods, during which time they can reproduce more often and pass on more of their genes.

The amount of genetic variation within local populations varies tremendously, and much of the discipline of conservation biology is concerned with maintaining genetic diversity within and among populations of plants and animals. Some small isolated populations of asexual species often have little genetic variation among individuals, whereas large sexual populations often have great variation. Two major factors are responsible for this variety: mode of reproduction and population size.

Effects of mode of reproduction: sexual and asexual

In sexual populations, genes are recombined in each generation, and new genotypes may result. Offspring in most sexual species inherit half their genes from their mother and half from their father, and their genetic makeup is therefore different from either parent or any other individual in the population. In both sexually and asexually reproducing species, mutations are the single most important source of genetic variation. New favourable mutations that initially appear in separate individuals can be recombined in many ways over time within a sexual population.

Chutes d'Ekom - a waterfall on the Nkam river in the rainforest near Melong, in the western highlands of Cameroon in Africa.
Britannica Quiz
Ecosystems

In contrast, the offspring of an asexual individual are genetically identical to their parent. The only source of new gene combinations in asexual populations is mutation. Asexual populations accumulate genetic variation only at the rate at which their genes mutate. Favourable mutations arising in different asexual individuals have no way of recombining and eventually appearing together in any one individual, as they do in sexual populations.

Effects of population size

Over long periods of time, genetic variation is more easily sustained in large populations than in small populations. Through the effects of random genetic drift, a genetic trait can be lost from a small population relatively quickly (see biosphere: Processes of evolution). For example, many populations have two or more forms of a gene, which are called alleles. Depending on which allele an individual has inherited, a certain phenotype will be produced. If populations remain small for many generations, they may lose all but one form of each gene by chance alone.

Get Unlimited Access
Try Britannica Premium for free and discover more.

This loss of alleles happens from sampling error. As individuals mate, they exchange genes. Imagine that initially half of the population has one form of a particular gene, and the other half of the population has another form of the gene. By chance, in a small population the exchange of genes could result in all individuals of the next generation having the same allele. The only way for this population to contain a variation of this gene again is through mutation of the gene or immigration of individuals from another population (see evolution: Genetic variation in populations).

Minimizing the loss of genetic variation in small populations is one of the major problems faced by conservation biologists. Environments constantly change, and natural selection continually sorts through the genetic variation found within each population, favouring those individuals with phenotypes best suited for the current environment. Natural selection, therefore, continually works to reduce genetic variation within populations, but populations risk extinction without the genetic variation that allows populations to respond evolutionarily to changes in the physical environment, diseases, predators, and competitors.