Alleviation of pain
Our editors will review what you’ve submitted and determine whether to revise the article.
- Stanford Encyclopedia of Philosophy - Pain
- Harvard Health Publishing - Pain
- Drugs.com - Pain Management: Types of Pain and Treatment Options
- American Physiological Society - The Physiology of Pain
- National Institute of Neurological Disorders and Stroke - Pain
- WebMD - Types of Pain
- Medicine LibreTexts - Pain
- The Nemours Foundation - For Kids - Why Do I Have Pain?
- National Center for Biotechnology Information - Physiology, Pain
- Healthline - Everything you Need to Know About Pain
- Better Health Channel - Pain and pain management
Attempts to relieve pain typically address both the physiological and the psychological aspects of pain. The reduction of anxiety, for example, may lessen the amount of medication needed to alleviate pain. Acute pain is generally the easiest to control; medication and rest are often effective treatments. Some pain, however, may defy treatment and persist for years. Such chronic pain can be compounded by hopelessness and anxiety.
Opiates are potent pain-relieving medications and are used to treat severe pain. Opium, a dried extract obtained from the unripe seedpods of opium poppy (Papaver somniferum), is one of the oldest analgesics. Morphine, a powerful opiate, is an extremely effective analgesic. Those narcotic alkaloids mimic the endorphins produced naturally by the body by binding to their receptors and blocking or reducing the activation of pain neurons. However, the use of opiate pain relievers must be monitored not only because they are addictive substances but also because the patient can develop a tolerance to them and may require progressively greater doses to achieve the desired level of pain relief. Overdose can cause potentially fatal respiratory depression. Other significant side effects, such as nausea and psychological depression upon withdrawal, also limit the usefulness of opiates.
Extracts of the bark of willows (genus Salix) contain the active ingredient salicin and have been used since antiquity to relieve pain. Modern nonnarcotic anti-inflammatory analgesic salicylates, such as aspirin (acetylsalicylic acid), and other anti-inflammatory analgesics, such as acetaminophen, nonsteroidal anti-inflammatory drugs (NSAIDs; e.g., ibuprofen), and cyclooxygenase (COX) inhibitors (e.g., celecoxib), are less potent than opiates but are nonaddictive. Aspirin, NSAIDs, and COX inhibitors either nonselectively or selectively block the activity of COX enzymes. COX enzymes are responsible for the conversion of arachidonic acid (a fatty acid) to prostaglandins, which enhance sensitivity to pain. Acetaminophen also prevents the formation of prostaglandins, but its activity appears to be limited primarily to the central nervous system and to be exerted through multiple mechanisms. Drugs known as N-methyl-d-aspartate receptor (NMDAR) antagonists, examples of which include dextromethorphan and ketamine, may be used in the treatment of certain forms of neuropathic pain, such as diabetic neuropathy. The drugs work by blocking NMDARs, the activation of which is involved in nociceptive transmission.
Psychotropic medications, including antidepressants and tranquilizers, may be used to treat patients with chronic pain who are also suffering from psychological conditions. Those medications help to reduce anxiety and sometimes alter the perception of the pain. Pain seems to be alleviated in a similar manner by hypnosis, placebos, and psychotherapy. Although the reasons why an individual may report pain relief after taking a placebo or following psychotherapy remain unclear, researchers suspect that the expectation of relief is stimulated by dopamine release in the region of the brain known as the ventral striatum. Activity in the ventral striatum is linked to increased dopamine activity and is associated with the placebo effect, in which pain relief is reported following treatment with a placebo.
Specific nerves can be blocked in cases in which pain is restricted to an area that has few sensory nerves. Phenol and alcohol are neurolytics that destroy nerves; lidocaine can be used for temporary pain relief. Surgical severing of nerves is rarely performed, because it can produce serious side effects such as motor loss or relocalized pain.
Some pain may be treated by transcutaneous electrical nerve stimulation (TENS), in which electrodes are placed on the skin above the painful area. The stimulation of additional peripheral nerve endings has an inhibitory effect on the nerve fibres generating the pain. Acupuncture, compresses, and heat treatment may operate by the same mechanism.
Chronic pain, defined generally as pain that has persisted for at least six months, presents the greatest challenge in pain management. Unrelieved chronic discomfort can cause psychological complications such as hypochondriasis, depression, sleep disturbances, loss of appetite, and feelings of helplessness. Many pain clinics offer a multidisciplinary approach to chronic pain treatment. Patients with chronic pain may require unique pain-management strategies. For example, some patients may benefit from the use of a surgical implant. Examples of implants include intrathecal drug delivery, in which a pump implanted beneath the skin delivers pain medication directly to the spinal cord, and a spinal cord stimulation implant, in which an electrical device placed in the body sends electric pulses to the spinal cord to inhibit the transmission of pain signals. Other strategies for the management of chronic pain include alternative therapy, exercise, physical therapy, cognitive behavioral therapy, and TENS. Therapy to identify emotions associated with chronic pain can benefit patients suffering from chronic pain of unknown cause.
The Editors of Encyclopaedia Britannica