Anticyclones
News •
While cyclones are typically regions of inclement weather, anticyclones are usually meteorologically quiet regions. Generally larger than cyclones, anticyclones exhibit persistent downward motions and yield dry stable air that may extend horizontally many hundreds of kilometres.
In most cases, an actively developing anticyclone forms over a ground location in the region of cold air behind a cyclone as it moves away. This anticyclone forms before the next cyclone advances into the area. Such an anticyclone is known as a cold anticyclone. A result of the downward air motion in an anticyclone, however, is compression of the descending air. As a consequence of this compression, the air is warmed. Thus, after a few days, the air composing the anticyclone at levels 2 to 5 km (1 to 3 miles) above the ground tends to increase in temperature, and the anticyclone is transformed into a warm anticyclone.
Warm anticyclones move slowly, and cyclones are diverted around their periphery. During their transformation from cold to warm status, anticyclones usually move out of the main belt followed by cyclones in middle latitudes and often amalgamate with the quasi-permanent bands of relatively high pressure found in both hemispheres around latitude 20° to 30°—the so-called subtropical anticyclones. On some occasions the warm anticyclones remain in the belt normally occupied by the mid-latitude westerly winds. The normal cyclone tracks are then considerably modified; atmospheric depressions (areas of low pressure) are either blocked in their eastward progress or diverted to the north or south of the anticyclone. Anticyclones that interrupt the normal circulation of the westerly wind in this way are called blocking anticyclones, or blocking highs. They frequently persist for a week or more, and the occurrence of a few such blocking anticyclones may dominate the character of a season. Blocking anticyclones are particularly common over Europe, the eastern Atlantic, and the Alaskan area.
The descent and warming of the air in an anticyclone might be expected to lead to the dissolution of clouds and the absence of rain. Near the centre of the anticyclone, the winds are light and the air can become stagnant. Air pollution can build up as a result. The city of Los Angeles, for example, often has poor air quality because it is frequently under a stationary anticyclone. In winter the ground cools, and the lower layers of the atmosphere also become cold. Fog may be formed as the air is cooled to its dew point in the stagnant air. Under other circumstances, the air trapped in the first kilometre above Earth’s surface may pick up moisture from the sea or other moist surfaces, and layers of cloud may form in areas near the ground up to a height of about 1 km (0.6 mile). Such layers of cloud can be persistent in anticyclones (except over the continents in summer), but they rarely grow thick enough to produce rain. If precipitation occurs, it is usually drizzle or light snow.
Anticyclones are often regions of clear skies and sunny weather in summer; at other times of the year, cloudy and foggy weather—especially over wet ground, snow cover, and the ocean—may be more typical. Winter anticyclones produce colder than average temperatures at the surface, particularly if the skies remain clear. Anticyclones are responsible for periods of little or no rain, and such periods may be prolonged in association with blocking highs.
Cyclone and anticyclone climatology
Migrating cyclones and anticyclones tend to be distributed around certain preferred regions, known as tracks, that emanate from preferred cyclogenetic and anticyclogenetic regions. The contrast between the winter and summer mean sea-level pressure diagrams also indicates the typical cyclone tracks for both January and July. Favoured cyclogenetic regions in the Northern Hemisphere are found on the lee side of mountains and off the east coasts of continents. Cyclones then track east or southeast before eventually turning toward the northeast and decaying. The tracks are displaced farther northward in July, reflecting the more northward position of the polar front in summer. Continental cyclones usually intensify at a rate of 0.5 mb (0.05 kPa) per hour or less, although more dramatic examples can be found. Marine cyclones, on the other hand, often experience explosive development in excess of 1 mb (0.1 kPa) per hour, particularly in winter.
Anticyclones tend to migrate equatorward out of the cold air mass regions and then eastward before decaying or merging with a warm anticyclone. Like cyclones, warm anticyclones also slowly migrate poleward with the warm season.
In the Southern Hemisphere, where most of Earth’s surface is covered by oceans, the cyclones are distributed fairly uniformly through the various longitudes. Typically, cyclones form initially in latitudes 30° to 40° S and move in a generally southeastward direction, reaching maturity in latitudes near 60° S. Thus, the Antarctic continent is usually ringed by a number of mature or decaying cyclones. The belt of ocean from 40° to 60° S is a region of persistent, strong westerly winds that form part of the circulation to the north of the main cyclone centres; These are the “roaring forties,” where the westerly winds are interrupted only at intervals by the passage southeastward of developing cyclones.