Table of Contents
References & Edit History Quick Facts & Related Topics

Abnormalities of the valves

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: cardiovascular system disease

News

New study finds air pollution increases inflammation primarily in patients with heart disease Nov. 18, 2024, 9:52 PM ET (Medical Xpress)
Air pollution spurs inflammation in heart failure patients Nov. 17, 2024, 11:59 PM ET (News-Medical)
Excessive sedentary time linked to higher heart disease risk Nov. 16, 2024, 12:56 AM ET (News-Medical)
Genetic study links heart shape to cardiovascular disease Nov. 14, 2024, 8:31 AM ET (Medical Xpress)

The most common congenital abnormality of the cardiac valves affects the aortic valve. The normal aortic valve usually has three cusps, or leaflets, but the valve is bicuspid in 1 to 2 percent of the population. A bicuspid aortic valve is not necessarily life-threatening, but in some persons it becomes thickened and obstructed (stenotic). With age the valve may also become incompetent or act as a nidus (focus of infection) for bacterial endocarditis. Congenital aortic valve stenosis, if severe, results in hypertrophy of the left ventricular myocardium and may rarely be responsible for sudden death in asymptomatic individuals. Even minor forms of aortic valve stenosis may grow progressively severe and are likely, with the passage of time, to require surgical treatment.

In contrast to aortic valve stenosis, pulmonary valve stenosis, if mild, is usually well tolerated and does not require surgical treatment. More severe forms of the disease may require surgery or balloon dilation (see below Surgical treatment of the heart).

Abnormalities of the myocardium and endocardium

Congenital abnormalities in the myocardium—for example, tumours—may be present at birth, but they are rare. Abnormalities of the endocardium may be present at birth, but they are also rare. They include fibroelastosis, a disease in which the endocardium develops a thick fibrous coat that interferes with the normal contraction and relaxation of the heart. This condition cannot be treated surgically and is usually life-threatening.

Abnormalities of the coronary arteries

The coronary arteries may arise abnormally from a pulmonary artery rather than from the aorta, with the result that deoxygenated blood instead of oxygenated blood flows through the heart muscle. Abnormal openings, called coronary arterial venous fistulas, may be present between the coronary arteries and the chambers of the heart. One or more of the three main coronary arteries may be absent. While these abnormalities are frequently asymptomatic, they may be associated with early, often sudden, death. If necessary, most coronary arterial abnormalities can be corrected surgically.

Abnormalities of the aorta

One of the most common congenital cardiovascular abnormalities involves the aorta. In coarctation of the aorta there is a narrowing of the aortic wall, usually at that portion of the aorta just beyond the site at which the main blood vessel to the left arm (the subclavian artery) originates. As a result of the narrowing or obstruction at this point, blood flow to the lower half of the body is diminished, and hypertension develops in the upper half of the body. This defect may give rise to heart failure in early infancy or complications in later childhood and adulthood.

Male muscle, man flexing arm, bicep curl.
Britannica Quiz
Facts You Should Know: The Human Body Quiz

During fetal life and immediately after birth, the ductus arteriosus connects the pulmonary artery and the first segment of the descending thoracic aorta. The function of this duct in utero is to shunt blood away from the lungs. If the ductus remains open after birth, excessive blood may flow into the lungs, resulting in pulmonary congestion and heart failure. Spontaneous closure of the ductus arteriosus may be delayed in premature newborn infants, exacerbating the respiratory problems common to them. If necessary, the ductus arteriosus can be induced to close with drugs in premature infants, and it can be closed in older infants and children by surgery or insertion of a prosthetic occluder by cardiac catheterization. Finally, there may be direct communication between the aorta and pulmonary arteries because the truncus arteriosus has either partially or completely failed to partition.

Anomalous pulmonary venous return

The pulmonary veins from the right and left lungs may connect either directly or indirectly to the right, instead of the left, atrium. In this condition the abnormal venous channel draining to the right side of the heart may become obstructed. Infants born with total anomalous (abnormal) pulmonary venous drainage usually develop problems within the first few weeks or months and thus require cardiac surgery. Partial forms of anomalous pulmonary venous return, in which only one or two pulmonary veins are connected abnormally, may have few symptoms, although surgical correction may be done if required.

Anomalies of the venae cavae

The most common abnormalities of the venae cavae, the major veins returning venous blood to the right side of the heart, are a persistent left superior vena cava (normally there is only one superior vena cava opening to the right side of the heart) and an abnormal connection of the inferior vena cava to the heart. These abnormalities are frequently associated with intracardiac structural faults.

Michael Francis Oliver Michael James Godman