Climate of the Atlantic Ocean
News •
The North Atlantic
Weather over the North Atlantic is largely determined by large-scale wind currents and air masses emanating from North America. Near Iceland, atmospheric pressure tends to be low, and air flows in a counterclockwise direction. Conversely, air flows clockwise around the Azores, a high-pressure area. The meeting of these two air currents generates prevailing westerly winds across the North Atlantic and over western Europe. In winter these winds meander at altitudes of about 10,000 to 40,000 feet (3,000 to 12,200 metres) over North America in such a way that a northward bulge (ridge) is generated by and over the Rocky Mountains and a southward bulge (trough) develops over the eastern half of the continent. This geographically forced flow pattern sets the stage for the frequent intrusion of cold air masses from Canada and Alaska to the Atlantic seaboard. Large temperature contrasts occur between the polar outbreaks and mild air from the Pacific or tropical air from the Gulf of Mexico or Gulf Stream. Along these zones of contrast, which are called fronts, extratropical (or wave) cyclones (low-pressure areas) are formed, and these develop into strong vortices as they move northeastward toward Newfoundland and Iceland. Their growth rate depends largely on the temperature contrast, so that storms in winter usually are stronger than those in summer.
These cyclonic storms carry heat, moisture, and momentum northward from the tropics and thereby siphon off the excess heat constantly generated by solar heating in the tropics. They also contribute a large share of the energy required to maintain the prevailing westerlies of midlatitudes, which are found to be half as strong and about 10° farther north in latitude over the North Atlantic in summer than in winter.
Since even in winter the temperatures of air masses along the eastern seaboard of North America vary considerably from one week to another, the number of coastal storms, their growth rate, and even their paths may vary. Thus, despite the underlying fixed geography, the North Atlantic average pressure distribution, on which the prevailing winds depend, may show large differences from one winter to the next. In some winters, Iceland may be dominated by prevailing high pressure in contrast to the normally low pressure, and in this case storms leaving the North American coast are blocked and shunted into the Davis Strait and to the Azores. When this happens, warm maritime air masses that normally flow into Europe and account for its relatively mild winters (considering its high latitude) are replaced by cold air from the European Arctic and from Siberia.
Thus, in winter tremendous amounts of heat are extracted from the western North Atlantic by overflowing cold air masses. Although the transfer of real (sensible) heat is large, the transfer of heat by evaporative losses into the cold, dry air is about three times larger. The oceanic heat losses are soon restored by the flow of warm water associated with the Gulf Stream and other currents. The net effect of the increase in heat and moisture off the east coast of North America is to further stimulate the growth of cyclonic storms.
In latitudes 15° to 30° N, the North Atlantic is characterized by prevailing high pressure with an attendant lack of intense storms and severe weather. These high-pressure areas are part of a globe-encircling belt in which air from the westerlies to the north and from the tropics to the south sinks about 900 feet (275 metres) per day and is warmed by compression, so that the weather there is often sunny and rainless. South of this North Atlantic high-pressure zone, the northeast trade winds blow with characteristic steadiness.
Although low latitudes of the North Atlantic are usually storm-free, there are notable exceptions during late summer and early fall, when wavy patterns in the east winds occur and occasionally develop into tropical-storm vortices called hurricanes. The hurricanes grow by the liberation of vast amounts of heat when vapour evaporated from the warm ocean is lifted and condensed to bands of heavy showers. Hurricanes may persist for more than a week, traveling as vortices of severe winds steered by upper-air currents. Thus, they frequently move clockwise around the periphery of the North Atlantic high-pressure belt and into the prevailing westerlies, often ending up in the Icelandic area. They have, however, occasionally struck the British Isles, and even the Azores, in modified form with abnormal upper-air wind patterns.
The North Atlantic Oscillation (NAO) is an irregular climate fluctuation, the phases of which may span months to decades. The phenomenon is measured by changes in a north-south atmospheric pressure gradient over the North Atlantic. Periodic shifts in relative pressure between the southern high and the northern low define the NAO. In general, the steeper the gradient, the stronger the wind, and the more heat from the Atlantic’s Gulf Stream is delivered to Europe, thereby ameliorating its climate. The NAO’s effect is more local than global, distinguishing it from other large-scale climate variations, such as the El Niño/Southern Oscillation (ENSO).
The South Atlantic
Over the South Atlantic the belt of prevailing westerlies extends from about latitude 40° S southward into the Southern Ocean almost to Antarctica, and the South Atlantic high-pressure area is centred around 30° S. This anticyclone (circulation of winds around a central region of high atmospheric pressure) leads to southeast trade winds on its north side, since the rotation of wind around the high-pressure area is opposite to that in the Northern Hemisphere because of the Coriolis force (the effect caused by Earth’s rotation). The southeast trades meet the northeast trades in the intertropical convergence zone, a region roughly centring on the Equator and characterized by heavy showers resulting from ascending warm, moist air that is being continually replaced by moistened trade-wind air. The doldrums, areas of calm oceanic and climatic conditions, also occur within the zone.
As in the North Atlantic, the weather usually is settled and fine in the latitudes of high pressure but is unsettled and stormy in the higher latitudes of the westerlies. The great storminess of the Southern Hemisphere westerlies derives largely from the temperature contrast set up by the cold Antarctic continent and the adjacent open sea, rather than from the west-east contrast described in connection with the North Atlantic storms.
While many regional weather peculiarities may be found over both the North and the South Atlantic, one of the most interesting is the large amount and variety of clouds in the westerlies. These clouds are continually being generated by the large cyclonic storm systems, by warm, moist air masses condensing while moving northward over colder water (in advance of storms), and by rapid vertical ascent (convection) produced by cold air streaming over warm water. Extensive fog banks may frequently be seen in summer off the Grand Banks, for example, when heated air from the continent is forced to flow over the cold Labrador Current.
Jerome Namias