John Dalton, (born Sept. 5 or 6, 1766, Eaglesfield, Cumberland, Eng.—died July 27, 1844, Manchester), British chemist and physicist. He spent most of his life in private teaching and research. His work on gases led him to state Dalton’s law (see gas laws). He devised a system of chemical symbols, ascertained the relative weights of atoms, and arranged them into a table. His masterpiece of synthesis was the atomic theory—the theory that each element is composed of tiny, indestructible particles called atoms that are all alike and have the same atomic weight—which elevated chemistry to a quantitative science. He was also the first to describe colour blindness (1794), and his lifelong meteorological journal contains more than 200,000 observations. He is remembered as one of the fathers of modern physical science.
John Dalton Article
John Dalton summary
Below is the article summary. For the full article, see John Dalton.
atomic weight Summary
Atomic weight, ratio of the average mass of a chemical element’s atoms to some standard. Since 1961 the standard unit of atomic mass has been one-twelfth the mass of an atom of the isotope carbon-12. An isotope is one of two or more species of atoms of the same chemical element that have different
colour blindness Summary
Colour blindness, inability to distinguish one or more of the three colours red, green, and blue. Most people with colour vision problems have a weak colour-sensing system rather than a frank loss of colour sensation. In the retina (the light-sensitive layer of tissue that lines the back and sides
gas Summary
Gas, one of the three fundamental states of matter, with distinctly different properties from the liquid and solid states. The remarkable feature of gases is that they appear to have no structure at all. They have neither a definite size nor shape, whereas ordinary solids have both a definite size
atmosphere Summary
Atmosphere, the gas and aerosol envelope that extends from the ocean, land, and ice-covered surface of a planet outward into space. The density of the atmosphere decreases outward, because the gravitational attraction of the planet, which pulls the gases and aerosols (microscopic suspended