method of exhaustion

mathematics
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Print
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Key People:
Eudoxus of Cnidus
Related Topics:
Euclidean geometry

method of exhaustion, in mathematics, technique invented by the classical Greeks to prove propositions regarding the areas and volumes of geometric figures. Although it was a forerunner of the integral calculus, the method of exhaustion used neither limits nor arguments about infinitesimal quantities. It was instead a strictly logical procedure, based upon the axiom that a given quantity can be made smaller than another given quantity by successively halving it (a finite number of times). From this axiom it can be shown, for example, that the area of a circle is proportional to the square of its radius. The term method of exhaustion was coined in Europe after the Renaissance and applied to the rigorous Greek procedures as well as to contemporary “proofs” of area formulas by “exhausting” the area of figures with successive polygonal approximations.