Heritability and malleability of intelligence

verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Intelligence has historically been conceptualized as a more or less fixed trait. Whereas a minority of investigators believe either that it is highly heritable or that it is minimally heritable, most take an intermediate position.

Among the most fruitful methods that have been used to assess the heritability of intelligence is the study of identical twins who were separated at an early age and reared apart. If the twins were raised in separate environments, and if it is assumed that when twins are separated they are randomly distributed across environments (often a dubious assumption), then the twins would have in common all of their genes but none of their environment, except for chance environmental overlap. As a result, the correlation between their performance on intelligence tests could identify any possible link between test scores and heredity. Another method compares the relationship between intelligence-test scores of identical twins and those of fraternal twins. Because these results are computed on the basis of intelligence-test scores, however, they represent only those aspects of intelligence that are measured by the tests.

Studies of twins do in fact provide strong evidence for the heritability of intelligence; the scores of identical twins reared apart are highly correlated. In addition, adopted children’s scores are highly correlated with their birth parents and not with their adoptive parents. Also significant are findings that heritability can differ between ethnic and racial groups, as well as across time within a single group; that is, the extent to which genes versus environment matter in IQ depends on many factors, including socioeconomic class. Moreover, the psychologist Robert Plomin and others have found that evidence of the heritability of intelligence increases with age; this suggests that, as a person grows older, genetic factors become a more important determinant of intelligence, while environmental factors become less important.

Whatever the heritability factor of IQ may be, it is a separate issue whether intelligence can be increased. Evidence that it can was provided by the American-born New Zealand political scientist James Flynn, who showed that intelligence test scores around the world rose steadily in the late 20th century. Among many possible causes of the increase were environmental changes such as the addition of vitamin C to prenatal and postnatal diet and, more generally, the improved nutrition of mothers and infants as compared with earlier in the century. In their book The Bell Curve (1994), Richard Herrnstein and Charles Murray argued that IQ is important for life success and that differences between racial groups in life success can be attributed in part to differences in IQ. They speculated that these differences might be genetic. Such claims, however, are speculative (see race: The scientific debate over “race”).

Despite the general increase in scores, average IQs continue to vary both across countries and across different socioeconomic groups. For example, many researchers have found a positive correlation between socioeconomic status and IQ, although they disagree about the reasons for the relationship. Most investigators also agree that differences in educational opportunities play an important role, though some believe that the main basis of the difference is hereditary. There is no broad agreement about why such differences exist. Most important, it should be noted that these differences are based on IQ alone and not on intelligence as it is more broadly defined. Even less is known about group differences in intelligence as it is broadly defined than is known about differences in IQ. Nevertheless, theories of inherited differences in IQ between racial groups have been found to be without basis. There is more variability within groups than between groups.

Finally, no matter how heritable intelligence may be, some aspects of it are still malleable. With intervention, even a highly heritable trait can be modified. A program of training in intellectual skills can increase some aspects of a person’s intelligence; however, no training program—no environmental condition of any sort—can make a genius of a person with low measured intelligence. But some gains are possible, and programs have been developed for increasing intellectual skills. Intelligence, in the view of many authorities, is not a foregone conclusion the day a person is born. A main trend for psychologists in the intelligence field has been to combine testing and training functions to help people make the most of their intelligence.

Robert J. Sternberg