diamagnetism

physics
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Print
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Key People:
Michael Faraday
Pierre Curie

diamagnetism, kind of magnetism characteristic of materials that line up at right angles to a nonuniform magnetic field and that partly expel from their interior the magnetic field in which they are placed. First observed by S.J. Brugmans (1778) in bismuth and antimony, diamagnetism was named and studied by Michael Faraday (beginning in 1845). He and subsequent experimenters found that some elements and most compounds exhibit this “negative” magnetism. Indeed, all substances are diamagnetic: the strong external magnetic field speeds up or slows down the electrons orbiting in atoms in such a way as to oppose the action of the external field in accordance with Lenz’s law.

The diamagnetism of some materials, however, is masked either by a weak magnetic attraction (paramagnetism) or a very strong attraction (ferromagnetism). Diamagnetism is observable in substances with symmetric electronic structure (as ionic crystals and rare gases) and no permanent magnetic moment. Diamagnetism is not affected by changes in temperature. For diamagnetic materials the value of the susceptibility (a measure of the relative amount of induced magnetism) is always negative and typically near negative one-millionth.

This article was most recently revised and updated by Erik Gregersen.