collision theory

chemistry
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Print
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Related Topics:
reaction rate

collision theory, theory used to predict the rates of chemical reactions, particularly for gases. The collision theory is based on the assumption that for a reaction to occur it is necessary for the reacting species (atoms or molecules) to come together or collide with one another. Not all collisions, however, bring about chemical change. A collision will be effective in producing chemical change only if the species brought together possess a certain minimum value of internal energy, equal to the activation energy of the reaction. Furthermore, the colliding species must be oriented in a manner favourable to the necessary rearrangement of atoms and electrons. Thus, according to the collision theory, the rate at which a chemical reaction proceeds is equal to the frequency of effective collisions. Because atomic or molecular frequencies of collisions can be calculated with some degree of accuracy only for gases (by application of the kinetic theory), the application of the collision theory is limited to gas-phase reactions.

The Editors of Encyclopaedia BritannicaThis article was most recently revised and updated by Adam Augustyn.