Detection of bird flu
- Also called:
- avian influenza
- Key People:
- Margaret Chan
- Related Topics:
- bird
- poultry
- fowl plague
- influenza type A virus
- H5N1 virus
News •
Early detection of bird flu is important in preventing and controlling outbreaks. One way the virus can be detected is by polymerase chain reaction (PCR), in which nucleic acids from blood or tissue samples are analyzed for the presence of molecules specific to bird flu. Other methods include viral antigen detection, which detects the reaction of antibodies to viral antigens in samples of skin cells or mucus, and viral culture, which is used to confirm the identity of specific subtypes of influenza based on the results of PCR or antigen detection and requires growth of the virus in cells in a laboratory. Tests based on lab-on-a-chip technology that take less than an hour to complete and can accurately identify specific subtypes of bird flu are being developed. This technology consists of a small device (the “chip”) that contains on its surface a series of scaled-down laboratory analyses requiring only a tiny volume of sample (e.g., picolitres of saliva). These chip-based tests, which are portable and cost-effective, can be used to detect different subtypes of influenza in both poultry and humans.
Vaccine development
Because of the many immunologically distinct viral subtypes that cause influenza in animals and the ability of the virus to rapidly evolve new strains, preparation of effective vaccines is complicated. The most effective control of outbreaks in poultry remains rapid culling of infected farm populations and decontamination of farms and equipment. This measure also serves to reduce the chances for human exposure to the virus.
In 2007 the U.S. Food and Drug Administration approved a vaccine to protect humans against one subtype of the H5N1 virus. It was the first vaccine approved for use against bird flu in humans. Drug manufacturers and policy makers in developed and developing countries worked toward establishing a stockpile of the vaccine to provide some measure of protection against a future outbreak of bird flu. In addition, scientists worked to develop a vaccine that is effective against another subtype of H5N1, as well as a vaccine that might protect against all subtypes of H5N1. Studies suggest that antiviral drugs developed for human flu viruses would work against bird flu infection in humans. The H5N1 virus, however, appears to be resistant to at least two of the drugs, amantadine and rimantadine.