The importance of bacteria to humans

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://www.britannica.com/science/bacteria
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: Schizophyta, bacterium

News

Tom’s of Maine Toothpaste Found to Have Bacteria During Inspection, F.D.A. Warns Nov. 20, 2024, 8:05 AM ET (New York Times)

Bacteria in food

Milk from a healthy cow initially contains very few bacteria, which primarily come from the skin of the cow and the procedures for handling the milk. Milk is an excellent growth medium for numerous bacteria, and the bacteria can increase rapidly in numbers unless the milk is properly processed. Bacterial growth can spoil the milk or even pose a serious health hazard if pathogenic bacteria are present. Diseases that can be transmitted from an infected cow include tuberculosis (Mycobacterium tuberculosis), undulant fever (Brucella abortus), and Q fever (Coxiella burnetii). In addition, typhoid fever (Salmonella typhi) can be transmitted through milk from an infected milk handler. Pasteurization procedures increase the temperature of the milk to 63 °C (145 °F) for 30 minutes or to 71 °C (160 °F) for 15 seconds, which kills any of the pathogenic bacteria that might be present, although these procedures do not kill all microorganisms.

Certain bacteria convert milk into useful dairy products, such as buttermilk, yogurt, and cheese. Commercially cultured buttermilk is prepared from milk inoculated with a starter culture of Lactococcus (usually L. lactis or L. lactis cremoris). Yogurt and other fermented milk products are produced in a similar manner using different cultures of bacteria. Many cheeses are likewise made through the action of bacteria. Growth in milk of an acid-producing bacterium such as L. lactis causes the casein to precipitate as curd. Following the removal of moisture and the addition of salt, the curd is allowed to ripen through the action of other microorganisms. Different bacteria impart different flavors and characteristics to foods; for example, the mixture of Lactobacillus casei, Streptococcus thermophilus, and Propionibacterium shermanii is responsible for the ripening of Swiss cheese and the production of its characteristic taste and large gas bubbles. In addition, Brevibacterium linens is responsible for the flavor of Limburger cheese, and molds (Penicillium species) are used in the manufacture of Roquefort and Camembert cheeses. Other types of bacteria have long been used in the preparation and preservation of various foods produced through bacterial fermentation, including pickled products, sauerkraut, and olives.

The toxins of many pathogenic bacteria that are transmitted in foods can cause food poisoning when ingested. These include a toxin produced by Staphylococcus aureus, which causes a rapid, severe, but limited gastrointestinal distress, or the toxin of Clostridium botulinum, which is often lethal. Production of botulism toxin can occur in canned nonacidic foods that have been incompletely cooked before sealing. C. botulinum forms heat-resistant spores that can germinate into vegetative bacterial cells that thrive in the anaerobic environment, which is conducive to the production of their extremely potent toxin. Other food-borne infections are actually transmitted from an infected food handler, including typhoid fever, salmonellosis (Salmonella species), and shigellosis (Shigella dysenteriae).

Substances contributing to the virulence of pathogenic bacteria
substance action
hyaluronidase increases permeability of tissue spaces to bacterial cells
coagulase increases resistance of bacteria to phagocytosis (engulfment by defense cells, or phagocytes)
hemolysins destroy red blood cells
collagenase dissolves collagen, a connective tissue protein
leukocidin kills white blood cells (specifically leukocytes) and hence decreases phagocytic action
exotoxins and endotoxins interfere with normal metabolic processes