21-centimetre radiation

verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: hydrogen line

21-centimetre radiation, electromagnetic radiation of radio wavelength emitted by cold, neutral, interstellar hydrogen atoms. The hydrogen atom is composed of a positively charged particle, the proton, and a negatively charged particle, the electron. These particles have some intrinsic angular momentum called spin. (However, this spin is not an actual physical rotation; it is, rather, a quantum mechanical effect.) When the spins of the two particles are antiparallel, then the atom is in its lowest energy state. When the spins are parallel, the atom has a tiny amount of extra energy. In the very cold space between the stars, the interstellar hydrogen atoms are at a state of lowest possible energy. Collisions between particles, however, can at times excite some atoms (which makes the spin of the particles parallel), giving them a tiny amount of energy. According to the rules of quantum mechanics, such atoms radiate their acquired energy in the form of low-energy photons that correspond to a wavelength of 21 centimetres, or a frequency of 1,420 megahertz. This transition, called a hyperfine transition, occurs roughly every 10 million years. This radio radiation was theoretically predicted by the Dutch astronomer H.C. van de Hulstin 1944 and was experimentally detected by American physicists Harold Ewen and Edward Purcell at Harvard University in 1951. Although the transition occurs very rarely, there is so much hydrogen in the Milky Way Galaxy that 21-centimetre hydrogen emission is easily observable. The 21-centimetre radiation readily penetrates the clouds of interstellar dust particles that obstruct optical observations deep into the galactic centre and thus allows the mapping of the galaxy’s spiral structure.

The Editors of Encyclopaedia Britannica This article was most recently revised and updated by Erik Gregersen.