Klein bottle, topological space, named for the German mathematician Felix Klein, obtained by identifying two ends of a cylindrical surface in the direction opposite that is necessary to obtain a torus. The surface is not constructible in three-dimensional Euclidean space but has interesting properties, such as being one-sided, like the Möbius strip (q.v.); being closed, yet having no “inside” like a torus or a sphere; and resulting in two Möbius strips if properly cut in two.